IS911 partial transposition products and their processing by the Escherichia coli RecG helicase.

نویسندگان

  • Catherine Turlan
  • Celine Loot
  • Michael Chandler
چکیده

Insertion of bacterial insertion sequence IS911 can often be directed to sequences resembling its ends. We have investigated this type of transposition and shown that it can occur via cleavage of a single end and its targeted transfer next to another end. The single end transfer (SET) events generate branched DNA molecules that contain a nicked Holliday junction and can be considered as partial transposition products. Our results indicate that these can be processed by the Escherichia coli host independently of IS911-encoded proteins. Such resolution depends on the presence of homologous DNA regions neighbouring the cross-over point in the SET molecule. Processing is often accompanied by sequence conversion between donor and target sequences, suggesting that branch migration is involved. We show that resolution is greatly reduced in a recG host. Thus, the branched DNA-specific helicase, RecG, involved in processing of potentially lethal DNA structures such as stalled replication forks, also intervenes in the resolution of partial IS911 transposition products.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Processing of recombination intermediates by the RecG and RuvAB proteins of Escherichia coli.

The RuvAB, RuvC and RecG proteins of Escherichia coli process intermediates in recombination and DNA repair into mature products. RuvAB and RecG catalyse branch migration of Holliday junctions, while RuvC resolves these structures by nuclease cleavage around the point of strand exchange. The overlap between RuvAB and RecG was investigated using synthetic X- and Y-junctions. RuvAB is a complex o...

متن کامل

ATP-dependent resolution of R-loops at the ColE1 replication origin by Escherichia coli RecG protein, a Holliday junction-specific helicase.

The RecG protein of Escherichia coli is a DNA helicase that promotes branch migration of the Holliday junctions. We found that overproduction of RecG protein drastically decreased copy numbers of ColE1-type plasmids, which require R-loop formation between the template DNA and a primer RNA transcript (RNA II) for the initiation of replication. RecG efficiently inhibited in vitro ColE1 DNA synthe...

متن کامل

DNA binding and helicase domains of the Escherichia coli recombination protein RecG.

The Escherichia coli RecG protein is a unique junction-specific helicase involved in DNA repair and recombination. The C-terminus of RecG contains motifs conserved throughout a wide range of DNA and RNA helicases and it is thought that this C-terminal half of RecG contains the helicase active site. However, the regions of RecG which confer junction DNA specificity are unknown. To begin to assig...

متن کامل

Effect of host species on recG phenotypes in Helicobacter pylori and Escherichia coli.

Recombination is a fundamental mechanism for the generation of genetic variation. Helicobacter pylori strains have different frequencies of intragenomic recombination, arising from deletions and duplications between DNA repeat sequences, as well as intergenomic recombination, facilitated by their natural competence. We identified a gene, hp1523, that influences recombination frequencies in this...

متن کامل

Requirement of IS911 replication before integration defines a new bacterial transposition pathway.

Movement of transposable elements is often accompanied by replication to ensure their proliferation. Replication is associated with both major classes of transposition mechanisms: cut-and-paste and cointegrate formation (paste-and-copy). Cut-and-paste transposition is often activated by replication of the transposon, while in cointegrate formation replication completes integration. We describe ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular microbiology

دوره 53 4  شماره 

صفحات  -

تاریخ انتشار 2004